Entrer un problème...
Algèbre linéaire Exemples
[12-3-1-2-463][12−3−1−2−463]
Étape 1
Write as an augmented matrix for Ax=0Ax=0.
[12-3-10-2-4630][12−3−10−2−4630]
Étape 2
Étape 2.1
Perform the row operation R2=R2+2R1R2=R2+2R1 to make the entry at 2,12,1 a 00.
Étape 2.1.1
Perform the row operation R2=R2+2R1R2=R2+2R1 to make the entry at 2,12,1 a 00.
[12-3-10-2+2⋅1-4+2⋅26+2⋅-33+2⋅-10+2⋅0][12−3−10−2+2⋅1−4+2⋅26+2⋅−33+2⋅−10+2⋅0]
Étape 2.1.2
Simplifiez R2R2.
[12-3-1000010][12−3−1000010]
[12-3-1000010][12−3−1000010]
Étape 2.2
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,41,4 a 00.
Étape 2.2.1
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,41,4 a 00.
[1+02+0-3+0-1+1⋅10+000010][1+02+0−3+0−1+1⋅10+000010]
Étape 2.2.2
Simplifiez R1R1.
[12-30000010][12−30000010]
[12-30000010][12−30000010]
[12-30000010][12−30000010]
Étape 3
Use the result matrix to declare the final solution to the system of equations.
x1+2x2-3x3=0x1+2x2−3x3=0
x4=0x4=0
Étape 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4]=[-2x2+3x3x2x30]⎡⎢
⎢
⎢
⎢⎣x1x2x3x4⎤⎥
⎥
⎥
⎥⎦=⎡⎢
⎢
⎢
⎢⎣−2x2+3x3x2x30⎤⎥
⎥
⎥
⎥⎦
Étape 5
Write the solution as a linear combination of vectors.
[x1x2x3x4]=x2[-2100]+x3[3010]
Étape 6
Write as a solution set.
{x2[-2100]+x3[3010]|x2,x3∈R}